Виды ионизирующих излучений, единицы измерения, воздействие на организм человека

Ионизирующее излучение, если говорить о нем в общем виде, – это различные виды микрочастиц и физических полей способных ионизировать вещество. Основными видами ионизирующего излучения является электро-магнитное излучение (рентгеновское и гамма-излучение), а также потоки заряженных частиц – альфа-частицы и бета-частицы, которые возникают при ядерном взрыве. Защита от поражающих факторов является основой гражданской обороны страны. Рассмотрим основные виды ионизирующего излучения.

Альфа-излучение

Альфа излучение – поток положительно заряженных частиц, образованная 2 протонами и 2 нейтронами. Частица идентична ядру атома гелия-4 (4He2+). Образуется при альфа-распаде ядер. Впервые альфа-излучение открыл Э. Резерфорд. Изучая радиоактивные элементы, в частности изучая такие радиоактивные элементы как уран радий и актиний, Э. Резерфорд пришел к выводу что все радиоактивные элементы испускают альфа- и бета-лучи. И, что еще более важно, радиоактивность любого радиоактивного элемента через определенный конкретный период времени уменьшается. Источником альфа-излучения являются радиоактивные элементы. В отличие от других видов ионизирующего излучения альфа-излучение является наиболее безобидным. Оно опасно лишь при попадании в организм такого вещества (вдыхание, съедание, выпивание, втирание и т.д.), так как пробег альфа частицы, например с энергией 5 МэВ, в воздухе составляет 3,7 см, а в биологической ткани 0,05 мм. Альфа-излучение попавшего в организм радионуклида наносит поистине кошмарные разрушения, т.к. коэффициент качества альфа излучения с энергией меньше 10 МэВ равен 20мм. а потери энергии происходят в очень тонком слое биологической ткани. Оно практически сжигает его. При поглощении альфа-частиц живыми организмами могут возникнуть мутагенные (факторы, вызывающий мутацию), канцерогенные (вещества или физический агент (излучение), способные вызвать развитие злокачественных новообразований) и другие отрицательные эффекты. Проникающая способность А.-и. невелика т.к. задерживается листом бумаги.

Бета-излучение

Бета-частица (β-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (β—), положительно заряженные — позитронами (β+).

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия лежит в диапазоне от 2,5 кэВ (для рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием электрического и магнитного полей отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света. Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение). Слой любого вещества с поверхностной плотностью порядка 1 г/см2 (например, несколько миллиметров алюминия или несколько метров воздуха) практически полностью поглощает бета-частицы с энергией около 1 МэВ.

Гамма-излучение

Гамма -излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны — < 5×10−3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Обычно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке — то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение).

Гамма-лучи в отличие от α-лучей и β-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).

Комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).

Рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).

Фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).

Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.

Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

Дополнительные материалы

Неврология. Повторный инфаркт головного мозга
Общие сведения Фамилия, имя, отчество Мишина Вера Петровна Возраст 75 лет Пол женский Профессия, должность пенсионерка Время поступления в клинику 7 декабря 2008 Жалобы На момент поступления больная жаловалась на слабость и снижение чувствительности в правой руке и правой ноге, нарушение речи История настоящего заболевания (anamnesis morbi) Со слов больной, около 20 лет страдает гипертонической болезнью с максимальным подъемом АД 180/100, постоянно принимает гипотензивные преп ...